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ABSTRACT

As a prevalent malignancy with substantial incidence 
and mortality worldwide, head and neck squamous cell 
carcinoma (HNSCC) originates from multiple locations of 
different tissues, which level up the difficulty and complexity 
of the cancer detection. The diagnosis requires high-
resolution imaging modalities and several approaches 
have been developed within recent decades to provide 
detailed anatomical information for HNSCC. This review 
aims to summarize basic knowledge of those mainstream 
modalities including ultrasound, magnetic resonance 
imaging (MRI), computed tomography (CT) and positron 
emission tomography (PET). Moreover, novel and advanced 
imaging techniques, such as radiomics and dual-energy 
computed tomography (DECT), will be described as newly 
developed approaches of quantitative and personalized 
medicine. By comparing the advantages and disadvantages 

of these techniques, we would like to additionally discuss the 
directions of next generation imaging approaches.

Keywords : imaging; head and neck squamous cell carcinoma; 
MRI; CT; radiomics; DECT.

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) ranks as the 
seventh most prevalent cancer worldwide, with 930,000 new 
cases and 470,000 deaths in 2020 [1]. The primary risk factors 
associated with HNSCC are tobacco, alcohol, environmental 
pollutants, human papillomavirus (HPV) and Epstein-Barr 
virus (EBV) [2]. Due to the subtle nature of early symptoms, 
the HNSCC lesions often go unnoticed and won’t be diagnosed 
until late stages. More than half of HNSCC patients develop 
locoregional recurrence or distal metastasis, which are 
detrimental [3,4]. The therapeutic effect of many developed 
radio/chemo-therapies as well as immunotherapies are 
limited, with a 5-year survival rate of 68.5% [5]. This raises a 
significant desire to determine or predict the cancer and to 
access the related clinical risk as early as possible. 
To better diagnose HNSCC, multiple imaging methods have 
been thrived in recent years, such as ultrasound, magnetic 
resonance imaging (MRI), computed tomography (CT) and 
positron emission tomography (PET) (Fig. 1). Among them, 
ultrasound acquires real-time, non-invasive soft tissue 
characteristics by employing high-frequency sound waves 
to probe internal tissues [6]. MRI offers high-resolution 
visualization of soft tissues without radiation exposure either 
[7]. As the preferred imaging modality, CT costs less but with 
rapid acquisition time and superior capability in evaluating 
osseous structures [8]. Compared to CT, PET/CT provides 
additional metabolic information with a higher sensitivity but 
a lower specificity [9]. We will next describe these imaging 
applications in HNSCC, followed by an introduction of the 
latest imaging technologies such as radiomics, dual-energy 
computed tomography (DECT) and the combined application 
of multimodal imaging technology.
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Figure 1

Figure 1. Developmental trajectory of medical imaging technology. Gray icons represent classical medical imaging modalities, while green 

icons denote relatively novel imaging technologies.

THE OVERVIEW OF HEAD AND NECK SQUAMOUS CELL CARCINOMA

HNSCC is a complex and heterogeneous disease often seen as lip and oral cavity cancers, as well as larynx cancers [10]. The 
malignant transformation starts with squamous epithelial cells lining the mucosal surfaces of the head and neck region. The 
common early symptoms of HNSCC, such as neck mass, sore throat and dysphagia [11], are similar to the ones of cold or other 
inflammation types. Therefore, over 60% of patients won’t be diagnosed until advanced-stage cancers [12]. HNSCC patients 
frequently undergo intensive treatments, leading to disfigurement, speech or taste impairment and chewing difficulties [13]. 
HNSCC primary tumors are often accompanied with the migration of cancer cells to nearby lymph nodes (LN). LN metastasis 
results in a 50% decrease in the five-year survival rate of HNSCC patients [14]. At advanced stages of HNSCC, the common 
metastatic sites include the lungs, bones and livers, which cause additional symptoms or complications [15]. Roughly 5% of the 
total HNSCC cases appear with unknown primary sites (UP). This subpopulation usually has cervical lymphadenopathy and is 
misdiagnosed for lack of symptoms of primary tumor. To access HNSCC staging, the TNM system is employed to estimate the 
tumor size and anatomical extent, which aids physicians to evaluate the tumor growth rate while formulating treatment plans.
Traditional risk factors for HNSCC include tobacco and alcohol use. Tobacco use was considered as the most predominant risk 
factor [16], and larynx is accordingly the most susceptible tissue. The odds ratio (OR) of the smokers for HNSCC development is 
2.13, approximately ten times greater than that of non-smokers [13,17]. Cigarette smoking has been shown to promote tumor 
cell proliferation, migration, invasion, metastasis and angiogenesis [17,18]. For example, carcinogens in tobacco induce HNSCC 
occurrence by forming DNA adducts that disrupt the DNA structure, and termination of tobacco usage can improve the prognosis 
of HNSCC patients [19]. Similar to tobacco, alcohol is positively associated with HNSCC establishment. The combination of 
both factors greatly enhances the risk possibilities of HNSCC development [20]. Besides, betel nut is another risk factor for 
oral and oropharyngeal cancers [21]. Other viral pathogens have also been proposed to contribute to HNSCC carcinogenesis. 
Approximately 25% of all the cases worldwide are associated with high-risk (HR) HPVs with the highest incidence observed in 
oropharyngeal squamous cell carcinoma (OPSCC)[22-24], whereas EBV has been primarily detected in nasopharyngeal cancer 
patients. In addition, HNSCC is also associated with oral hygiene, female hormone levels, and occupational exposure, as well 
as food factors such as high-fat, processed meat and sugary dietary patterns [5,25]. 
The prevalence of HNSCC is projected to surge 30% by 2030, reaching 1.08 million new cases worldwide annually [2]. The 
incidence of HNSCC varies with regions, sexes, ages, social status, and economic levels [5]. In southeast Asia, the high incidence 
of oral cancer is significantly due to betel nut usage, while in the United States and Europe, oropharyngeal cancer is mainly 
associated with HPV infection [26]. Males has higher chances to develop HNSCC than females, with a male to female ratio of 
2:1 globally [1], [5,27]. At least 1 in 5 new cases of HNSCC in the United Kingdom fall into the population aged 75 years or older. 
HNSCC incidence can also be impacted by socioeconomic status (SES), which encompasses household income, insurance 
status and the educational level. HNSCC patients with low SES face a risk of death within 5 years, which is three times higher 
than that of high SES patients [28].

https://www.cicasereports.org


Clinical Imaging and Case Reports (ISSN 2770-9205)

Mini Review

3www.cicasereports.org

CLASSICAL IMAGING MODALITIES FOR HEAD AND 
NECK SQUAMOUS CELL CARCINOMA

It is pivotal to apply medical imaging techniques to better 
access HNSCC patients. Ultrasound, MRI, CT, and PET bring 
their specific advantages into the diagnosis, staging, treatment 
planning, and prognosis evaluation for HNSCC patients. This 
section will outline the principles, strengths, weaknesses, and 
applicable scenarios of these imaging tools.

Ultrasound
Ultrasound employs high-frequency sound waves to explore 
within tissues, converting acoustic wave properties into real-
time grayscale images [29]. The advantages of ultrasound 
include easily access, economic expense, and devoid of 
radiation. Particularly, ultrasound offers excellent spatial 
resolution and clear visualization of small nodules like the 
vagus nerves, which is often challenging for CT or MRI [30]. 
Therefore, ultrasound is  exceptionally well for thyroid cancer 
when imaging neck lumps, salivary gland lesions and lymph 
nodes [31]. It is often combined with fine-needle aspiration for 
cytology (FNAC) to enhance diagnostic accuracy in evaluating 
thyroid nodules [32]. Meanwhile, ultrasound is used to detect 
UP of the oropharyngeal tumor by visualization of anatomical 
features of tongue malignancy bases, which are usually 
difficult to be identified by other methods [33]. Ultrasound-
guided surgery allows more precise resection of lesion 
margins and reduces the need for adjuvant radiotherapy 
[34]. On the other side, ultrasound has certain limitations. 
The quality of ultrasound imaging significantly relies on the 
operator’s experience and technical proficiency. The image 
clarity and resolution can be reduced by constraints such 
as depth, experiencing attenuation and scattering when 
penetrating deep tissues.

Magnetic resonance imaging (MRI)
As a magnetic field-based imaging technology, MRI has been 
widely applied for HNSCC diagnosis with various parameters 
such as T1 relaxation time, T2 relaxation time and proton 
density. Compared to ultrasound, MRI provides superior soft 
tissue contrast for better visualization of tumor size, extent and 
the relationship with adjacent structures [35,36]. In particular, 
MRI plays unique roles in visualizing perineural invasion, 
extracapsular extension and muscle invasion [37]. Tumor and 
inflammation in laryngeal and hypopharyngeal HNSCC can be 
better distinguished by MRI analysis according to the signal 
intensity of T1 and T2 sequences [38]. The enhanced signals 
on T2-weighted MRI images help to distinguish chondroid 
neoplasms from invasive nasopharyngeal carcinoma [6]. 
MRI is friendly to pregnant women and children who are 
vulnerable to radiation. In addition, two functional MRIs have 
been developed to predict chemoradiotherapy outcomes for 

patients with advanced HNSCC [39]. High apparent diffusion 
coefficients (ADCs) of diffusion-weighted imaging (DWI) are 
associated with poor outcome in pre-treated HNSCC patients. 
Another indicator so referred to as Ktrans, generated by 
dynamic contrast-enhanced MRI (DCE-MRI), positively predicts 
outcome of the treatment [40]. 
Despite its’ advantages, MRI scans require a longer scanning 
time compared to CT, and patients must remain still to ensure 
clear images, which may be troublesome for those who cannot 
tolerate prolonged scans. Additionally, MRI is not suitable for 
patients with metal implants, pacemakers, or claustrophobia. 
The high cost also poses a challenge for certain regions and 
patients.

Computed tomography (CT)
Based on X-ray and computational reconstruction techniques, 
CT is extensively used to obtain high-resolution cross-
sectional images of head and neck region. The generated 
images provide accurate information about the size, shape 
and location of HNSCC. CT also helps to identify the number 
of adjacent LN and to determine the status of metastasis. 
These data contribute to clinical TNM staging of HNSCC as 
well as subsequent treatment options. Furthermore, CT scans 
can detect recurrence and metastases of HNSCC patients 
timely, contributing to early intervention and prognosis 
improvement [41]. To prevent that the regional LN is missed 
or faulty diagnosed, administration of intravenous (IV) is 
performed to better distinguish tissues with similar contrast 
and to determine lesions observed on the scan. Some side 
effects of IV have been found in HNSCC patients, such as 
anaphylaxis, renal dysfunction and extravasation [42]. The 
limitations of CT include potential exposure to ionizing 
radiation from X-rays, difficulties in visualizing soft tissues, 
and a lack of capability to assess functional information like 
blood flow [43,44].

Positron emission tomography (PET)
PET provides physiological, biochemical, and metabolic 
information by utilizing positron emission from radioactive 
isotopes. It is often combined with CT, especially for 
the locoregionally advanced disease, to identify distant 
metastases and second primary tumors (SPTs) [15,45]. These 
combined PET/CT images fuse metabolic and anatomical 
data, using 18F-FDG as a common tracer for the disease [46]. 
PET/CT has better accuracy in distant metastases screening 
at advanced HNSCC stages, compared to CT and MRI imaging 
[47,48]. Without PET/CT scans, 19.3% of patients would have 
been improperly staged or misdiagnosed for SPTs that are 
main causes of long-term mortality [49]-[51]. Moreover, early 
PET/CT scanning between 8 and 12 weeks after patients’ 
chemoradiotherapies provides valuable predictive values 
for residual viable nodal disease [52,53], which can spare 
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patients from unnecessary neck dissection. Whether 8-12 week is the optimal timing still needs more discussion for the PET/
CT scan following the completion of therapy. One disadvantage of PET/CT could bring potential false-positive results due to 
the fact that 18F-FDG might be more uptaken by infections, inflammation or radiation therapy-induced ulcers [9], [54]. This will 
increase the patient’s unnecessary anxiety as well as redundant tests. The high cost also poses a certain burden to the patients.
The principles, advantages and disadvantages of these methods are presented in Table 1.

Table 1. Comparisons of various imaging techniques

Type Principles Techniques Advantages Disadvantages

High-frequency 
sound waves

Ultrasound Easily access
Relatively inexpensive
No radiation and safety
Non-invasive approach
Dynamic real-time images
Shows soft tissues in great 
detail

Operator-dependent
Limited tissue penetration
Limited in imaging bone and 
air-filled structures

Traditional 
imaging
modalities

Magnetic field
Radio waves

MRI Excellent soft tissue contrast
Multiplanar imaging capability
No radiation
Non-invasive approach

Long scanning time
High cost
Contraindication (metal 
implants, pacemakers, 
claustrophobia)

X-rays CT High-resolution cross-sectional 
images
Fast scanning speed
Wide availability

Ionizing radiation exposure
Limited soft tissue contrast
Limited in functional and 
metabolic information
Potential for contrast agent 
allergies

X-rays PET/CT Superior in cancer staging and 
detection
Provides information on both 
function and structure

Ionizing radiation exposure
Costly and not as widely 
available

Radionuclide Potential false-positive results
High cost

Data/analyse Radiomics Non-invasive process
Comprehensively evaluate

Lack of clinical validation
Poor reproducibility
Lack of standardization
Limited data

Emerging 
technologies

Two different 
energies of X-rays

DECT Improved contrast agent effect
Virtual non-contrast
Quantitative assessment

Metal artifacts
High cost

Magnetic field PET/MRI Significantly reduced radiation 
exposure

Lack of protocol and 
standardization

Radionuclide Convenience of two scans in 
one

Limited flexibility

Imaging fusion High acquisition times of up to 
60 min
High cost
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FUTURE DIRECTIONS AND EMERGING TECHNOLOGIES

Beyond the established modalities like CT and MRI, there is 
a growing array of emerging technologies at the forefront 
of HNSCC diagnostic imaging. The most promising aspects 
are the integration of imaging techniques with artificial 
intelligence (AI), with current focal points involving whole slide 
imaging and radiomics. Additionally, multimodal collaborative 
diagnostic tools, such as PET/MRI, MRI/CT and SPECT/CT, have 
been developed to improve diagnosis. We’ll highlight some of 
these technologies in this section.

Whole slide imaging (WSI)
The whole slide imaging (WSI) refers to digitalized scanning 
of conventional slides. Traditionally, pathological slides are 
read by light microscopy, which is usually slow, subjective and 
less reproducible. Instead, WSI generates more objective and 
reproducible digital datasets by digitization of pathological 
slides (so called “digital slides”) using specialized hardware, 
with a combined AI-based analysis [55]. Many commercial 
WSI models are capable of processing up to 400 slides, which 
greatly reduce the analysis time. In this way, WSI is expected 
to automate pathology diagnosis and to better interpret 
parameters of the tumor microenvironment [56,57]. One 
barrier of WSI application is the large data space required 
for image acquisition (a typical 1,600 megapixel digital slide 
need about 4.6 GB of memory) as well as software processing 
abilities for those digital slides. Other limitations of WSI 
include image quality of conventional slides, inability of high-
throughput scanning, pathologists’ reluctance, etc. Most 
of these will be largely compensated by the integration of 
artificial intelligence/machine learning (AI/ML).
AI has been extremely developed within recent 2 decades, 
with the progression of supercomputational capability and 
fast data transportation. A well-known example could be 
“voice assistants”, such as Siri, Alexa, and so on, who are 
able to recognize speech, complete voice commands, and 
communicate with humans. One great power of AI is its 
automated learning abilities, so called as machine learning 
(ML). ML is a feature of AI that effectively performs missions 
based on historical data and statistical algorithms without 
exact instructions. The high accuracy of ML has been validated 
in prediction of HNSCC prognosis as well as optimization of 
clinical decision-making, by integration of multi-modal data 
such as imaging, clinical data, genomic data, etc [58,59]. 
Therefore, AI/ML is now widely applied in otolaryngology-
head and neck surgery for disease diagnosis, pathology 
detection and outcome prediction [60]. The scientific field of 
ML still faces certain potential challenges, such as black-box 
concern (models of opaque systems operation are not easy 
to access or interpret) and result or model interpretability 
[61]. In addition, AI/ML can be applied to many other imaging 
approaches such as radiomics.

Radiomics
Radiomics is a systematic imaging approach that extract 
detailed features by high-throughput data mining of a vast 
array of clinical images (including CT, MRI, and PET) combined 
with application of computational algorithms [62-64]. The 
employment of radiomics helps to distinguish HNSCC tissues 
from inflammatory or necrotic tissues and to comprehensively 
evaluate HNSCC information in depth, including HPV infection, 
tumor staging, metastasis, recurrence and survival [58,65-
67]. These radiomic features can be better characterized by 
optimization of radiomics analysis as well as ML algorithms 
[68]. Due to variable location of primary tumors of HNSCC, 
the parameter of tumor location has been suggested to be 
considered in HNSCC radiomic research [69]. In addition, the 
combination of the quantitative data from radiomics analysis 
and genomic phenotypes (so called as radiogenomics) has 
also been developed to explore molecular expression in 
HNSCC [70,71].
Though radiomics can improve diagnosis, clinical decision-
making and prognosis [62], the application is still constrained 
by many factors. For example, the difference between 
theory and clinical practice leads to the poor practicability of 
radiomics. Lack of standardization, technical deficiencies, and 
limited data often lead to poor reproducibility of radiomics 
[63,72]. Those limitations highlight the need for further 
improvement in radiomics.

Dual-energy computed tomography (DECT)
Dual-energy CT, also known as spectral CT, is a computed 
tomography that uses two separate X-ray photon energy 
spectra to generate accurate anatomical and functional 
photographs. Compared with single energy CT, DECT is more 
suitable for ML to improve the performance of computational 
image analysis and biomarker prediction models [73,74]. 
DECT image reconstructions with quantitative analyses better 
characterize tumor tissues from surrounding structures [75], 
contributing to accurate determination of tumor staging 
and surgical resection boundaries or radiation therapy 
approaches [76]. Practically, DECT uses the differences in 
spectral Hounsfield unit attenuation characteristics between 
non-ossified thyroid cartilage and tumors to identify thyroid 
cartilage invasion [77]. This is of significant importance for 
patients with hypopharyngeal and laryngeal squamous cell 
carcinoma, as it is related to organ (laryngeal) preservation 
and postoperative quality of patient lives [76,78]. DECT also 
has valuable advantages in lymph node differentiation [79], 
because it can clearly distinct among normal, inflammatory 
and metastatic neck lymph nodes of squamous cell 
carcinoma. As for the disadvantage of DECT, metal dentures 
and orthodontic appliances often cause artifacts that can 
obscure certain lesions and degrade image quality. To 
avoid it, reducing metal artifacts on DECT images should be 
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considered, which can be realized by the combination of 
DECT with iterative reconstructions [80,81].

PET/MRI
PET/MRI scan is a hybrid technology that combines the 
functional PET imaging with the high-resolution structural 
imaging of MRI to produce a more detailed and comprehensive 
image of the internal body. Compared to PET/CT, PET/MRI 
offers superior diagnosis of lesions, invasion assessment 
and detection of lymph node metastasis [82,83]. PET/MRI 
demonstrates strong concordance with histopathological 
results of pre-treatment T staging [84], which refers to the 
original tumor size and extent. In addition, PET/MRI reduces 
radiation exposure by approximately 50% and exhibits higher 
HNSCC detection rates than PET/CT due to its improved soft 
tissue contrast. These would be more beneficial in adolescent 
and child patients [85]. The combination of functional MR 
Sequences (DWI or DCE-MRI) as previously mentioned with 
PET may help to distinguish between inflammatory and 
neoplastic lymph nodes [86]. The cost of PET/MRI may be 
more expensive than the individual approach, causing a 
significant financial burden for patients.

CONCLUSIONS AND FUTURE PERSPECTIVES

In this minireview, we firstly summarized the common 
imaging methods utilized in HNSCC management. Ultrasound 
is the initial choice for thyroid cancer assessment. MRI excels 
in soft tissue contrast and tumor visualization, while CT is 
the primary tool for HNSCC evaluation, offering insights into 
tumor morphology, lymph nodes, and recurrence. Moreover, 
PET/CT is good for identifying distant metastases and second 
primary tumors, and has the best predictive value for residual 
lymph nodes at 8-12 weeks after chemoradiotherapy. Besides 
conventional imaging, the combination of multiple imaging 
modalities such as PET/MRI greatly improves HNSCC diagnosis 
with reduced radiation. The convergence of AI and imaging 
technologies has become a promising direction. Radiomics 
has been the focus of research in recent years.
The effectiveness of radiomics in predicting treatment 
outcomes and survival of HNSCC highlights the reliable 
feasibility of radiomics combined with more bioinformatic 
analyses or AI-based advanced algorithms. Additional 
analytical approaches, such as transcriptomics, proteomics 
and metabolomics, are expected to be applied with radiomics 
to gain new insights into the disease’s pathogenesis. Because 
AI-based image data analysis is still not well developed for 
early diagnosis and medicine development, progresses have 
to be achieved in all aspects such as technology, database 
establishment and even privacy protection. Addressing these 
challenges will foster a deeper integration of clinical practice 
and AI, enhancing HNSCC management.
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Simple Summary
This review delves into the latest advancements of imaging 
detection techniques for head and neck squamous cell 
carcinoma (HNSCC), a prevalent and life-threatening cancer. By 
exploring methods such as ultrasound, MRI, CT and PET scans, 
we aim to provide a clear understanding of their strengths 
and limitations in HNSCC diagnosis. Emerging technologies 
like radiomics and dual-energy CT are additionally introduced, 
which offer promising avenues for personalized and precision 
medicine. Through this comprehensive comparison, the 
review endeavors to contribute valuable insights to HNSCC 
detection, with an effort of disclosing future integration of 
clinical diagnosis with artificial intelligence that benefit the 
management of HNSCC patients.
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